已知矩阵 $\boldsymbol{A}=\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4\right)$ 经过初等行变换化为 $\left(\begin{array}{llll}1 & 1 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1\end{array}\right)$, 选 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 为最大无关组, 则 $\boldsymbol{\alpha}_4$ 由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示为 $\alpha_4=$
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$