下列结论正确的是$\left(\quad\right)$.
$\text{A.}$ 若 $\left\{a_n\right\}$有界, $\lim \limits _{n \rightarrow \infty }b_{n} $存在,则 $\lim \limits _{n \rightarrow \infty }a_{n}b_{n}$ 存在
$\text{B.}$ 若 $\left\{a_n\right\}$有界, $\lim \limits _{n \rightarrow \infty }b_{n}=0$, 则 $\lim \limits_ {n \rightarrow \infty }a_{n}b_{n}=0$
$\text{C.}$ 若 $\left\{a_n\right\}$无界,$\left\{b_n\right\}$无界,则 $\left\{a_nb_n\right\}$ 无界
$\text{D.}$ 若 $\left\{a_n\right\}$为无穷小数列,$\left\{b_n\right\}$无界,则 $\lim \limits_ {n \rightarrow \infty }a_{n}b_{n}=0$