科数网
试题 ID 5287
【所属试卷】
2023年河南省普通高中适应性测试(理科数学)
已知正实数 $a, b, c$ 满足 $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$.
(1) 求 $a+4 b+9 c$ 的最小值;
(2) 证明: $\frac{b+c}{\sqrt{a}}+\frac{a+c}{\sqrt{b}}+\frac{a+b}{\sqrt{c}} \geqslant 2 \sqrt{a b c}$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知正实数 $a, b, c$ 满足 $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$.
(1) 求 $a+4 b+9 c$ 的最小值;
(2) 证明: $\frac{b+c}{\sqrt{a}}+\frac{a+c}{\sqrt{b}}+\frac{a+b}{\sqrt{c}} \geqslant 2 \sqrt{a b c}$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见