设 3 阶矩阵 $\boldsymbol{A}$ 的特征值为 $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3$, 对应的特征向量依次为 $\boldsymbol{\xi}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \boldsymbol{\xi}_{2}=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$, $\boldsymbol{\xi}_{3}=\left(\begin{array}{l}1 \\ 3 \\ 9\end{array}\right)$, 又向量 $\boldsymbol{\beta}=\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)$.
(1)将 $\boldsymbol{\beta}$ 用 $\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \boldsymbol{\xi}_{3}$ 线性表出;
(2) 求 $\boldsymbol{A}^{n} \boldsymbol{\beta}(n$ 为自然数).
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$