科数网
试题 ID 500
【所属试卷】
1991年全国硕士研究生招生统一考试数学试题及详细参考解答(数一)
求 $\iiint_{\Omega}\left(x^{2}+y^{2}+z\right) \mathrm{d} v$, 其中 $\Omega$ 是由曲线
$\left\{\begin{array}{l}
y^{2}=2 z \\
x=0
\end{array}\right.$
绕 $ z $ 轴旋转一周而成的曲面与平面 $ z=4$ 所围成的立体.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
求 $\iiint_{\Omega}\left(x^{2}+y^{2}+z\right) \mathrm{d} v$, 其中 $\Omega$ 是由曲线
$\left\{\begin{array}{l}
y^{2}=2 z \\
x=0
\end{array}\right.$
绕 $ z $ 轴旋转一周而成的曲面与平面 $ z=4$ 所围成的立体.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见