设$f(x)$二阶可导, $\lim \limits _{x \rightarrow 0} \dfrac {f(x)-1}{x}=0$ 且$f(1)=1$,证明:存在$\xi\in(0,1)$,使得$f''(\xi)=0$.
$\text{A.}$ $-f( -1 ) < f( 1) < f'( 0)$
$\text{B.}$ $-f( -1 ) < f'( 0) < f( 1)$
$\text{C.}$ $f( 1) < -f( -1) < f'(0)$
$\text{D.}$ $f(1) < f'(0) < -f(-1)$