科数网
试题 ID 4622
【所属试卷】
2022年普通高等学校招生全国统一考试(浙江卷)
已知函数 $f(x)=\left\{\begin{array}{l}-x^2+2, x \leq 1, \\ x+\frac{1}{x}-1, x>1,\end{array}\right.$ 则 $f\left(f\left(\frac{1}{2}\right)\right)=$ ; 若当 $x \in[a, b]$ 时, $1 \leq f(x) \leq 3$, 则 $b-a$ 的最大值是
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
已知函数 $f(x)=\left\{\begin{array}{l}-x^2+2, x \leq 1, \\ x+\frac{1}{x}-1, x>1,\end{array}\right.$ 则 $f\left(f\left(\frac{1}{2}\right)\right)=$ ; 若当 $x \in[a, b]$ 时, $1 \leq f(x) \leq 3$, 则 $b-a$ 的最大值是
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见