题号:
4394
题型:
填空题
来源:
设$ \lim \limits _{x \rightarrow \infty } \left ( \dfrac {x+c}{x-c} \right )^{ \dfrac {2x^{2}+3x+2}{x+1}}= \lim \limits _{x \rightarrow 0}( \cos x+x^{2})^{ \dfrac {1}{ \sin ^{2}x}}$, 则$c=\underline{\quad\quad\quad}$.
0
人点赞
收藏
6
次查看
我来讲解
答案:
$\dfrac {1}{8}$
解析:
$\lim _{x \rightarrow \infty}\left(\dfrac{x+c}{x-c}\right)^{\dfrac{2 x^{2}+3 x+2}{x+1}}=\lim _{x \rightarrow \infty}\left[\left(1+\dfrac{2 c}{x-c}\right)^{\dfrac{x-c}{2 c}}\right]^{\dfrac{2 x^{2}+3 x+2}{x+1} \cdot \dfrac{2 c}{x-c}}$
$={e}^{\dfrac{2 c}{x \rightarrow \lim \frac{2 x^{2}+3 x+2}{x}(x+1)(x-c)}}=\mathrm{e}^{4 c}$,
$ \lim _{x \rightarrow 0}\left(\cos x+x^{2}\right)^{\dfrac{1}{\operatorname{sn}^{2} x}}=\lim _{x \rightarrow 0}\left\{\left[1+\left(\cos x-1+x^{2}\right)\right]^{\dfrac{1}{\cos x-1+x^{2}}}\right\}^{\dfrac{\cos x-1+x^{2}}{\sin ^{2} x}}$
$=\mathrm{e}^{\lim \dfrac{\operatorname{los} x-1+x^{2}}{\sin ^{2} x}} \\ =\mathrm{e}^{\lim _{x \rightarrow 0} \dfrac{\cos x-1+x^{2}}{x^{2}}}=\mathrm{e}^{\lim _{x \rightarrow 0} \dfrac{\cos x-1}{x^{2}+1}}=\mathrm{e}^{\dfrac{1}{2}} $
得 $c=\frac{1}{8} .$
①点击
首页
查看更多试卷和试题 , 点击查看
本题所在试卷
②
下载本题Word版
或
下载本题PDF版
点击
赞助本站
关闭