科数网
题号:4379    题型:解答题    来源:2023年贵州省 高考备考针对性联考(理科数学)
已知椭圆 $C: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0, b>0)$ 过点 $\left(1, \frac{\sqrt{6}}{2}\right)$, 且离心率为 $\frac{\sqrt{2}}{2}$.
(1) 求椭圆 $C$ 的方程;
(2) 已知直线 $l: y=m x+2$ 与椭圆交于不同的两点 $P, Q$, 那么在 $x$ 轴上是否存在点 $M$, 使 $M P=M Q$ 且 $M P \perp M Q$, 若存在, 求出该直线的方程; 若不存在, 请说明理由.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP