题号:4379    题型:解答题    来源:2023年贵州省 高考备考针对性联考(理科数学)
已知椭圆 $C: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a > 0, b > 0)$ 过点 $\left(1, \frac{\sqrt{6}}{2}\right)$, 且离心率为 $\frac{\sqrt{2}}{2}$.
(1) 求椭圆 $C$ 的方程;
(2) 已知直线 $l: y=m x+2$ 与椭圆交于不同的两点 $P, Q$, 那么在 $x$ 轴上是否存在点 $M$, 使 $M P=M Q$ 且 $M P \perp M Q$, 若存在, 求出该直线的方程; 若不存在, 请说明理由.
0 人点赞 收藏 ​ ​ 14 次查看 我来讲解
答案:
答案仅限会员可见,新注册账户免费送7天会员,价格 30元/30天, 200元/年, 999元/终身 微信扫码支付,会员可无限制查看下载试题
①点击 首页查看更多试卷和试题 , 点击查看 本题所在试卷
下载本题Word版 下载本题PDF版 点击 赞助本站

关闭