题号:
4321
题型:
解答题
来源:
延安大学《概率论与数理统计》期末考试模拟试卷(1)
设总体 $\mathrm{X}$ 的密度函数为 $f(x, \beta)=\left\{\begin{array}{cl}\frac{\beta}{x^{\beta+1}}, & x > 1 \\ 0, & x \leq 1\end{array}\right.$
其中末知参数 $\beta > 1, X_1, X_2, \cdots, X_n$ 为取自总体 $\mathrm{X}$ 的简单随机样本, 求参数 $\beta$ 的矩估计量和极大似然估计量.
0
人点赞
收藏
8
次查看
我来讲解
答案:
答案仅限会员可见,新注册账户免费送7天会员,价格 30元/30天, 200元/年, 999元/终身 微信扫码支付,会员可无限制查看下载试题
①点击
首页
查看更多试卷和试题 , 点击查看
本题所在试卷
②
下载本题Word版
或
下载本题PDF版
点击
赞助本站
关闭