设 $f(x)=a \int_0^{\sin x}\left(\mathrm{e}^{t^2}-1\right) \mathrm{d} t, x^n \ln (1+x)$ 是 $g(x)$ 的一个原函数, 其中 $a$ 为常数, $n$ 为正整 数, 若 $x \rightarrow 0$ 时 $f(x)$ 与 $g(x)$ 是等价无穷小, 则
$\text{A.}$ $a=12, n=4$
$\text{B.}$ $a=12, n=3$
$\text{C.}$ $a=6, n=4$
$\text{D.}$ $a=6, n=3$