• 试题 ID 35873


已知四维实向量空间 $z^4$ 中的向量组

$$
\begin{gathered}
\boldsymbol{\alpha}_1=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \boldsymbol{\alpha}_2=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \boldsymbol{\alpha}_3=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \boldsymbol{\alpha}_4=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] ; \\
\boldsymbol{\beta}_1=\left[\begin{array}{r}
1 \\
-1 \\
a \\
1
\end{array}\right], \boldsymbol{\beta}_2=\left[\begin{array}{c}
-1 \\
1 \\
2-a \\
1
\end{array}\right], \boldsymbol{\beta}_3=\left[\begin{array}{r}
-1 \\
1 \\
0 \\
0
\end{array}\right], \boldsymbol{\beta}_4=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] .
\end{gathered}
$$


试求:(1)常数 $a$ 的值,使 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3, \boldsymbol{\beta}_1$ 为 $\mathbb{R}^4$ 的基;
(2)由 $\mathbb{R}^i$ 的基 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ 到基 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3, \boldsymbol{\beta}_4$ 的过渡矩阵 $\boldsymbol{P}$ .
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见