设 $\boldsymbol{A}, \boldsymbol{B}$ 为 $n$ 阶方阵,且秩相等,即 $r(\boldsymbol{A})=r(\boldsymbol{B})$ ,则( .
A
$\mathrm{r}(\boldsymbol{A}-\boldsymbol{B})=0$ ;
B
$\mathrm{r}(\boldsymbol{A}+\boldsymbol{B})=2 \mathrm{r}(\boldsymbol{A})$ ;
C
$\mathrm{r}(\boldsymbol{A}, \boldsymbol{B})=2 \mathrm{r}(\boldsymbol{A})$ ;
D
$\mathrm{r}(\boldsymbol{A}, \boldsymbol{B}) \leqslant \mathrm{r}(\boldsymbol{A})+\mathrm{r}(\boldsymbol{B})$ .
E
F