设二维随机变量 $(X, Y) \sim N(0,0 ; 1,1 ; 0), U=a X+b Y, V=c X+d Y$, 其中 $a, b, c, d$ 为实 数, 则 $(U, V) \sim N(0,0 ; 1,1 ; 0)$ 是 $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ 为正交矩阵的
$\text{A.}$ 充分必要条件
$\text{B.}$ 充分非必要条件
$\text{C.}$ 必要非充分条件
$\text{D.}$ 非充分非必要条件