科数网
试题 ID 35317
【所属试卷】
清华大学微积分A(1)期末考试题即参考答案
设 $f(x)$ 在 $[0,1]$ 上非负连续,且满足 $(f(x))^2 \leq 1+2 \int_0^x f(t) \mathrm{d} t, x \in[0,1]$ ,证明: $f(x) \leq 1+x, x \in[0,1]$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $f(x)$ 在 $[0,1]$ 上非负连续,且满足 $(f(x))^2 \leq 1+2 \int_0^x f(t) \mathrm{d} t, x \in[0,1]$ ,证明: $f(x) \leq 1+x, x \in[0,1]$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见