设 $a_n=\frac{3}{2} \int_0^{\frac{n}{n+1}} x^{n-1} \sqrt{1+x^n} \mathrm{~d} x$ ,则极限 $\lim _{n \rightarrow \infty} n a_n$ 等于
A
$(1+\mathrm{e})^{\frac{3}{2}}+1$ .
B
$\left(1+\mathrm{e}^{-1}\right)^{\frac{3}{2}}-1$ .
C
$\left(1+\mathrm{e}^{-1}\right)^{\frac{3}{2}}+1$ .
D
$(1+\mathrm{e})^{\frac{3}{2}}-1$ .
E
F