• 试题 ID 34795


设连续随机变量 X 的分布函数为 $\mathrm{F}(\mathrm{x})$ , a 为正数,则 $\mathrm{P}(|\mathrm{X}| \leqslant \mathrm{a})$ 等于
A $\mathrm{F}(\mathrm{a})+\mathrm{F}(-\mathrm{a})$
B $\mathrm{F}(\mathrm{a})+\mathrm{F}(-\mathrm{a})-1$
C $\mathrm{F}(\mathrm{a})-\mathrm{F}(-\mathrm{a})$
D $1-\mathrm{F}(\mathrm{a})+\mathrm{F}(-\mathrm{a})$
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见