设 $f(x), g(x)$ 为 $E \subset \mathbb{R}^1$ 上非负 Lebesgue 可测函数,$f g \in \mathscr{L}(E)$ .令
$$
E_y=\{x \in E \mid g(x) \geqslant y\} .
$$
证明:对 $\forall y>0$ ,
$$
F(y)=(\mathrm{L}) \int_{E_y} f(x) \mathrm{d} x
$$
均存在有限,且有
$(\mathrm{L}) \int_0^{+\infty} F(y) \mathrm{d} y=(\mathrm{L}) \int_E f(x) g(x) \mathrm{d} x$.
证明 证法 1 (省"(L)")因为
$$
\begin{aligned}
0 \leqslant F(y) & =\int_{E_y} f(x) \mathrm{d} x=\frac{1}{y} \int_{E_y} f(x) \cdot y \mathrm{~d} x \leqslant \frac{1}{y} \int_{E_y} f(x) g(x) \mathrm{d} x \\
& \leqslant \frac{1}{y} \int_E f(x) g(x) \mathrm{d} x < +\infty, \quad y>0
\end{aligned}
$$
所以对 $\forall y>0$ ,
$$
F(y)=\int_{E_y} f(x) \mathrm{d} x
$$
存在有限.
作函数
$$
G(x, y)=f(x) \cdot \chi_{E(g)}(x, y) \geqslant 0
$$
其中 $E(g)=\left\{(x, y) \in \mathbb{R}^2 \mid 0 \leqslant y \leqslant g(x), x \in E\right\}$ 。根据 Tonelli 定理 3.7.1,有
$$
\begin{aligned}
\int_0^{+\infty} F(y) \mathrm{d} y & =\int_0^{+\infty} \mathrm{d} y \int_{E_y} f(x) \mathrm{d} x=\int_{\mathbf{R}^1} \mathrm{~d} y \int_{\mathbf{R}^1} G(x, y) \mathrm{d} x \\
& =\int_{\mathbf{R}^2} G(x, y) \mathrm{d} x \mathrm{~d} y=\int_{\mathbf{R}^1} \mathrm{~d} x \int_{\mathbf{R}^1} G(x, y) \mathrm{d} y \\
& =\int_E \mathrm{~d} x \int_0^{g(x)} f(x) \mathrm{d} y=\int_E f(x) g(x) \mathrm{d} x
\end{aligned}
$$
$$
\begin{aligned}
&\text { 证法 } 2\\
&\begin{aligned}
\int_0^{+\infty} F(y) \mathrm{d} y & =\int_0^{+\infty}\left(\int_{E_y} f(x) \mathrm{d} x\right) \mathrm{d} y \\
& =\int_0^{+\infty}\left(\int_E f(x) \chi_{E_y}(x) \mathrm{d} x\right) \xlongequal{\text { Tonelli }} \int_E f(x)\left(\int_0^{+\infty} \chi_{E_y}(x) \mathrm{d} y\right) \mathrm{d} x \\
& =\int_E f(x) \int_0^{g(x)} 1 \mathrm{~d} y=\int_E f(x) g(x) \mathrm{d} x
\end{aligned}
\end{aligned}
$$