科数网
数学题库
数学试卷
会员组卷
知识库
几何图库
新建试题
关于
初中版
试题篮
0
登录
注册/登录
手机版
返回
导出PDF
导出Word
在线讲解
加入试卷
题号:
3333
题型:
单选题
来源:
2023湖南长郡中心高三第三次月考数学试卷
入库日期
2022/12/6 10:33:10
已知: $A(-2,0), B(2,0), C(0,2), E(-1,0), F(1,0)$, 一束光线从 $F$ 点 出发射到 $B C$ 上的 $D$ 点经 $B C$ 反射后, 再经 $A C$ 反射, 落到线段 $A E$ 上 (不含端点). 则 $F D$ 斜率的取值范围是
$ \text{A.} $ $(-\infty,-2)$
$ \text{B.} $ $(0,+\infty)$
$ \text{C.} $ $(1,+\infty)$
$ \text{D.} $ $(4,+\infty)$
0
条评论
0
人点赞
收藏
11
次查看
分享
编辑此题
【答案】
D
【解析】
$\because A(-2,0), B(2,0), C(0,2), \therefore$ 直线 $B C$ 的方程为 $x+y-2=0$, 直线 $A C$ 的方程为 $x-y+2=0$, 如图, 作 $F$ 关于 $B C$ 的对称点 $P, \because F(1,0), \therefore P(2,1)$, 再作 $P$ 关于 $A C$ 的对称点 $M$, 则 $M(-1,4)$,
连接 $M A, M E$, 且 $M E$ 交 $A C$ 于点 $N$, 则直线 $M E$ 的方程为 $x=-1, \therefore N(-1,1)$, 连接 $P N, P A$, 分别交 $B C$ 于点 $G, H$, 则直线 $P N$ 的方程为 $y=1$, 直线 $P A$ 的方程为 $x-4 y+2=0$, $\therefore G(1,1), H\left(\frac{6}{5}, \frac{4}{5}\right)$. 连接 $G F, H F$, 则 $G, H$ 之间即为点 $D$ 的变动范围.
$\because$ 直线 $F G$ 的方程为 $x=1$, 直线 $F H$ 的斜率为 $\frac{\frac{4}{5}}{\frac{6}{5}-1}=4, \therefore$ 直线 $F D$ 斜率的取值范围为 $(4,+\infty)$. 故选 D.
上一题
下一题
系统推荐
填空题 来源:邯郸市2023届高三年级摸底考试试卷(新高考)
设函数 $f(x)=\sin \omega x+\sin \left(\omega x+\frac{\pi}{3}\right)(\omega>0)$, 已知 $f(x)$ 在 $[0, \pi]$ 上有 且仅有 3 个极值点, 则 $\omega$ 的取值范围是
填空题 来源:2013 年全国统一高考数学试卷(理科)(新课标Ⅰ)
设当 $x=\theta$ 时,函数 $f(x)=\sin x-2 \cos x$ 取得最大值, 则 $\cos \theta=$
单选题 来源:2021-2022学年濮阳高一第一次月考数学试卷
如果集合 $A=\left\{x | a x^2+2 x+1=0\right\}$ 中只有一个元素,则$a$的值为