(北京交通大学,2005 年)已知线性方程组
( I )$\left\{\begin{array}{l}a_{11} x_1+a_{12} x_2+\cdots+a_{1,2 n} x_{2 n}=0, \\ a_{21} x_1+a_{22} x_2+\cdots+a_{2,2 n} x_{2 n}=0, \\ \cdots \cdots \cdots \cdots \\ a_{n 1} x_1+a_{n 2} x_2+\cdots+a_{n, 2 n} x_{2 n}=0\end{array}\right.$
的一个基础解系为
$$
\left(b_{11}, b_{12}, \cdots, b_{1,2 n}\right)^{\mathrm{T}},\left(b_{21}, b_{22}, \cdots, b_{2,2 n}\right)^{\mathrm{T}}, \cdots,\left(b_{n 1}, b_{n 2}, \cdots, b_{n, 2 n}\right)^{\mathrm{T}} .
$$
求线性方程组
$$
\left\{\begin{array}{l}
b_{11} y_1+b_{12} y_2+\cdots+b_{1,2 n} y_{2 n}=0 \\
b_{21} y_1+b_{22} y_2+\cdots+b_{2,2 n} y_{2 n}=0 \\
\cdots \cdots \cdots \cdots \\
b_{n 1} y_1+b_{n 2} y_2+\cdots+b_{n, 2 n} y_{2 n}=0
\end{array}\right.
$$
的通解,并说明理由.