阅读下面的材料,并解答问题:
$$
\begin{aligned}
& \frac{1}{\sqrt{2}+1}=\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}=\sqrt{2}-1 \\
& \frac{1}{\sqrt{3}+\sqrt{2}}=\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}=\sqrt{3}-\sqrt{2} \\
& \frac{1}{\sqrt{4}+\sqrt{3}}=\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}=\sqrt{4}-\sqrt{3}
\end{aligned}
$$
(1)观察上面的等式,请直接写出化简 $\frac{1}{\sqrt{n+1}+\sqrt{n}}(n$ 为正整数)的结果为_;
(2)计算:$(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})=$ ;
(3)请利用上面的规律及解法计算:
$$
\left(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+\mathrm{L}+\frac{1}{\sqrt{2024}+\sqrt{2023}}\right) \times(\sqrt{2024}+1) .
$$