• 试题 ID 3223


设函数 $f(x)$ 连续,且
$\int_0^x t f(2 x-t) \mathrm{d} t=\frac{1}{2} \arctan \left(x^2\right)$. 已知 $f(1)=1$ ,
求 $\int_1^2 f(x) \mathrm{d} x$ 的值.
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见