科数网
题号:3206    题型:填空题    来源:李永乐武忠祥宋浩陈默等著2023考研数学最后三套过线急救版(数学三)
设平面区域 $G$ 是由直线 $y=0, x=\mathrm{e}$ 以及曲线 $y=\ln x$ 围成, 随机变量 $(X, Y)$ 在区域 $G$ 内服 从均匀分布.
(I) 求条件密度函数 $f_{X \mid Y}(x \mid y)$ 与 $f_{Y \mid X}(y \mid x)$;
(II) $F(x, y)$ 是 $(X, Y)$ 的分布函数,求 $F\left(\frac{\mathrm{e}}{2}, \ln \frac{\mathrm{e}}{2}\right)$;
(III) 设 $\left(Y_1, Y_2, \cdots, Y_n\right)$ 是取自 $Y$ 的样本, $S^2=\frac{1}{n-1} \sum_{i=1}^n\left(Y_i-\bar{Y}\right)^2$ 为样本方差, 求 $E\left(S^2\right)$.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP