设二次型 $f\left(x_1, x_2, x_3\right)=x_1^2-2 x_2^2+a x_3^2+2 x_1 x_2-4 x_1 x_3+2 x_2 x_3$, 经可逆线性变换 $\boldsymbol{x}=\boldsymbol{P y}$ 化为二次型 $g\left(y_1, y_2, y_3\right)=y_1^2+y_2^2-2 y_3^2+2 y_1 y_2$, 则 $a=$
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$