设 $X_n$ 表示将一硬币独立重复投掷 $n$ 次,出现反面向上的次数,则
A
$\lim _{n \rightarrow \infty} P\left\{\frac{X_n-n}{\sqrt{n}} \leqslant x\right\}=\Phi(x)$
B
$\lim _{n \rightarrow \infty} P\left\{\frac{X_n-2 n}{\sqrt{n}} \leqslant x\right\}=\Phi(x)$
C
$\lim _{n \rightarrow \infty} P\left\{\frac{2 X_n-n}{\sqrt{n}} \leqslant x\right\}=\Phi(x)$
D
$\lim _{n \rightarrow \infty} P\left\{\frac{2 X_n-2 n}{\sqrt{n}} \leqslant x\right\}=\Phi(x)$
E
F