设 $x^2+y^2 \leqslant 2 a y(a>0)$ ,则 $\iint_D f(x, y) \mathrm{d} x \mathrm{~d} y$ 在极坐标下的累次积分为()。
A
$\int_0^\pi \mathrm{d} \theta \int_0^{2 a \cos \theta} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r$
B
$\int_0^\pi \mathrm{d} \theta \int_0^{2 a \sin \theta} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r$
C
$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathrm{~d} \theta \int_0^{2 a \cos \theta} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r$
D
$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathrm{~d} \theta \int_0^{2 a \sin \theta} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r$
E
F