• 试题 ID 31013


设 $a, b$ 为常数且 $a>b>0$ ,则实积分 $\int_0^{2 \pi} \frac{d \theta}{(a+b \cos \theta)^2}$ 可转化为复积分 .
A $\frac{4}{i} \oint_{|z|=1} \frac{z}{\left(b z^2+2 a z+b\right)^2} d z$
B $4 i \oint_{|z|=1} \frac{z}{\left(b z^2+2 a z+b\right)^2} d z$
C $\frac{1}{4 i} \oint_{|z|=1} \frac{z}{\left(b z^2+2 a z+b\right)^2} d z$
D $\frac{i}{4} \oint_{|z|=1} \frac{z}{\left(b z^2+2 a z+b\right)^2} d z$
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见