设 $f(x)=\ln \left(1+x^{\frac{2}{3}}\right)-x^{\frac{2}{3}}$, 则
$\text{A.}$ $f^{\prime}(0)$ 不存在, $f^{\prime \prime}(0)$ 不存在.
$\text{B.}$ $f^{\prime}(0)$ 存在, $f^{\prime \prime}(0)$ 不存在.
$\text{C.}$ $f^{\prime}(0)$ 存在, $f^{\prime \prime}(0)$ 存在.
$\text{D.}$ 无法确定 $f^{\prime \prime}(0)$ 是否存在.