科数网
试题 ID 30632
【所属试卷】
杨超《考前必做139》道题目-高等数学2
设 $f(x)$ 在 $[0,1]$ 上连续,在 $(0,1)$ 内可导,且 $f(0)=0, f(1)=1$ .证明:(1)存在两个不同的点 $\xi_1, \xi_2 \in(0,1)$ ,使得 $f^{\prime}\left(\xi_1\right)+f^{\prime}\left(\xi_2\right)=2$ ;
(2)存在 $\xi, \eta \in(0,1)$ ,使得 $\eta f^{\prime}(\xi)=f(\eta) f^{\prime}(\eta)$ .
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $f(x)$ 在 $[0,1]$ 上连续,在 $(0,1)$ 内可导,且 $f(0)=0, f(1)=1$ .证明:(1)存在两个不同的点 $\xi_1, \xi_2 \in(0,1)$ ,使得 $f^{\prime}\left(\xi_1\right)+f^{\prime}\left(\xi_2\right)=2$ ;
(2)存在 $\xi, \eta \in(0,1)$ ,使得 $\eta f^{\prime}(\xi)=f(\eta) f^{\prime}(\eta)$ .
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见