设 $f^{\prime}(0)$ 存在,且对 $0 < x_n < y_n, y_n \rightarrow 0(n \rightarrow \infty)$ .若数列 $\left\{y_n /\left(y_n-\right.\right.$ $\left.\left.x_n\right)\right\}$ 是有界列,则 $\lim _{n \rightarrow \infty} \frac{f\left(y_n\right)-f\left(x_n\right)}{y_n-x_n}=f^{\prime}(0)$ .