设 $X_1, X_2, \cdots, X_{2 n}$ 为来自正态总体 $N(0,1)$ 的简单随机样本,用切比雪夫不等式估计,$\forall \varepsilon>0$ , $P\left\{\left|\frac{1}{n} \sum_{i=1}^n\left(X_{n+i}-X_i\right)^2-2\right| \geqslant \varepsilon\right\} \leqslant(\quad)$
A
$\frac{8}{n \varepsilon^2}$
B
$\frac{4}{n \varepsilon^2}$
C
$\frac{2}{n \varepsilon^2}$
D
$\frac{1}{n \varepsilon^2}$
E
F