已知数列 $\left\{a_{n}\right\}$ 各项为正数,$\left\{b_{n}\right\}$ 满足 $a_{n}^{2}=b_{n} b_{n+1}, a_{n}+a_{n+1}=2 b_{n+1}$ ,则
A
$\left\{b_{n}\right\}$ 是等差数列
B
$\left\{b_{n}\right\}$ 是等比数列
C
$\left\{\sqrt{b_{n}}\right\}$ 是等差数列
D
$\left\{\sqrt{b_{n}}\right\}$ 是等比数列
E
F