设 $z=f\left[\sin \left(x^2+y^2\right), \ln \left(1+x^2+y^2\right)\right]$ ,其中 $f$ 具有连续的一阶偏导数,则 $\left.\left(\frac{\partial^2 z}{\partial x^2}-\frac{\partial^2 z}{\partial x \partial y}+\frac{\partial^2 z}{\partial y^2}\right)\right|_{(0.0)}=$ $\qquad$ .