科数网
题号:2482    题型:单选题    来源:2022年9月考研数学 (一二三) 第一次模拟试题
设 $g(t)$ 是正值连续函数, 且 $f(x)=\int_{-a}^a|x-t| g(t) \mathrm{d} t, a>0, x \in[-a, a]$, 关于曲线 $y=f(x)$, 下列说法正确的是
$\text{A.}$ 在 $[-a, 0]$ 上是凹的, 在 $[0, a]$ 上是凸的 $\text{B.}$ 在 $[-a, 0]$ 上是凸的, 在 $[0, a]$ 上是凹的. $\text{C.}$ 在 $[-a, a]$ 上是凹的. $\text{D.}$ 在 $[-a, a]$ 上是凸的.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP