科数网
题号:21551    题型:单选题    来源:李艳芳考研数学微信公众号《每日一题》2011.04期
设函数 $f(x)=\lim _{n \rightarrow \infty} \sqrt[n]{1+|x|^{3 n}}$, 则 $f(x)$在 $(-\infty,+\infty)$ 内 ( )

$\text{A.}$ 处处可导. $\text{B.}$ 恰有一个不可导点. $\text{C.}$ 恰有两个不可导点. $\text{D.}$ 至少有三个不可导点.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP