设 $f(x, y)=\left\{\begin{array}{l}\sqrt{x^2+y^2} \sin \frac{1}{x^2+y^2},(x, y) \neq(0,0), \\ 0, \quad(x, y)=(0,0),\end{array}\right.$ 则 $f(x, y)$ 在点 $(0,0)$ 处
$\text{A.}$ 两个偏导数都存在,函数也连续。
$\text{B.}$ 两个偏导数都存在, 但函数不连续.
$\text{C.}$ 偏导数不存在,但函数连续。
$\text{D.}$ 偏导数不存在, 函数也不连续.