科数网
题号:20443    题型:解答题    来源:考研数学《概率论与数理统计》(数一数三)共享大题压轴题
设 $X_1, X_2, \cdots, X_n$ 为来自总体 $X$ 的简单随机样本, $X$ 的概率密度为

$$
f(x)=\frac{1}{2 \lambda} e^{-\frac{|x|}{\lambda}} \quad(-\infty < x < +\infty, \lambda>0) .
$$

(I) 求参数 $\lambda$ 的矩估计量 $\hat{\lambda}_1$;
(II) 求参数 $\lambda$ 的最大似然估计量 $\hat{\lambda}_2$;
(III) 判断 $\hat{\lambda}_2$ 是否为 $\lambda$ 的无偏估计量, 并说明理由.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP