科数网
题号:20433    题型:解答题    来源:第十六届大学生数学竞赛初赛试卷(2024年A类)
设双叶双曲面 $S: x^2+y^2-z^2=-2$. 记以 $M_0(1,1,-1)$ 为顶点且与 $S$ 的上半叶$S^{+}=\{(x, y, z) \in S \mid z \geq \sqrt{2}\}$相切的所有切线构成的锥面为 $\Sigma$ 。
(1) 求锥面 $\Sigma$ 的方程;
(2) 求 $S^{+} \cap \Sigma$ 所在平面 $\pi$ 的方程.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP