科数网
题号:20422    题型:解答题    来源:唐绍东笔记《重积分》挑战版
给定积分 $I=\iint_D\left[\left(\frac{\partial f}{\partial x}\right)^2+\left(\frac{\partial f}{\partial y}\right)^2\right] d x d y$, 作正则变换 $x=x(u, v), y=y(u, v)$, 区域 $D$ 变为 $\Omega$ ,如果变换满足

$$
\frac{\partial x}{\partial u}=\frac{\partial y}{\partial v}, \quad \frac{\partial x}{\partial v}=-\frac{\partial y}{\partial u}
$$


证明:

$$
I=\iint_{\Omega}\left[\left(\frac{\partial f}{\partial u}\right)^2+\left(\frac{\partial f}{\partial v}\right)^2\right] d u d v
$$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP