设 $\alpha_1, \alpha_2, \alpha_3$ 是三维向量空间 $R^3$ 的一组基, $\beta_1=\alpha_1+t \alpha_2, \beta_2=\alpha_2+\alpha_3, \beta_3=\alpha_1+s \alpha_3$, 其中 $t, s$ 为参数, 证明: 当 $t+s \neq 0$ 时, $\beta_1, \beta_2, \beta_3$ 也是三维向量空间 $R^3$ 的一组基.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$