设随机变量 $X \sim N(0,1)$, 其分布函数为 $\Phi(x)$, 则随机变量 $Y=\min \{X, 0\}$ 的分布函数 $F(y)$ 为
$\text{A.}$ $F(y)= \begin{cases}1, & y>0, \\ \Phi(y), & y \leqslant 0 .\end{cases}$
$\text{B.}$ $F(y)= \begin{cases}1, & y \geqslant 0, \\ \Phi(y), & y < 0 .\end{cases}$
$\text{C.}$ $F(y)= \begin{cases}0, & y \leqslant 0, \\ \Phi(y), & y>0 .\end{cases}$
$\text{D.}$ $F(y)= \begin{cases}0, & y < 0, \\ \Phi(y), & y \geqslant 0 .\end{cases}$