已知 $D=\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq 2\}$, 则
(I) 求 $k=\iint_D|x y-1| d x d y$ ;
(II) 根据(I)中所求 $k$, 设 $f(x, y)$ 在 $D$ 内连续, 且 $\iint_D f(x, y) d x d y=0$, $\iint_D x y f(x, y) d x d y=1$. 试证明存在 $(\xi, \eta) \in D$ 使得 $|f(\xi, \eta)| \geqslant \frac{1}{k}$.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$