设 $f(x)=\int_0^x \ln \left(1+t^3\right) \mathrm{d} t, g(x)=x^2$. 若当 $x \rightarrow 0^{+}$时, $f(x)$ 是 $g(x)$ 的高阶无穷小, 而当 $x \rightarrow+\infty$ 时, $\frac{1}{g(x)}$ 是 $\frac{1}{f(x)}$ 的高阶无穷小, 则常数 $\alpha$ 的取值范围为
$\text{A.}$ $(0,3)$.
$\text{B.}$ $(1,3)$.
$\text{C.}$ $(0,4)$.
$\text{D.}$ $(1,4)$.