(1) 设 $\boldsymbol{A}, \boldsymbol{B}$ 为 $n$ 阶可相似对角化矩阵, 且有相同特征值, 证明: 矩阵 $\boldsymbol{A}, \boldsymbol{B}$ 相似;
(2)设 $\boldsymbol{A}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right), \boldsymbol{B}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right)$, 求可逆矩阵 $\boldsymbol{P}$, 使得 $\boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P}=\boldsymbol{B}$.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$