(1) 设 $\boldsymbol{A}, \boldsymbol{B}$ 为 $n$ 阶矩阵, 且 $\boldsymbol{A}$ 为对称阵, 证明 $\boldsymbol{B}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{B}$ 也是对称阵;
(2) 设 $\boldsymbol{A}, \boldsymbol{B}$ 都是 $n$ 阶对称阵,证明 $\boldsymbol{A B}$ 是对称阵的充要条件是 $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}$.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$