如图, 在平行四边形 $A B C D$ 中, $A D=2 A B=2, \angle A B C=60^{\circ}, E, F$ 是对角线 $B D$ 上的动点, 且 $B E=D F, M, N$ 分别是边 $A D$, 边 $B C$ 上的动点. 下列四种说法:
(1)存在无数个平行四边形 MENF;
(2)存在无数个矩形 $M E N F$;
(3)存在无数个菱形 $M E N F$ ;
(4)存在无数个正方形 MENF.
其中正确的个数是()
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4