当 $x \rightarrow x_0$ 时, $\alpha(x), \beta(x)$ 都是无穷小, 则当 $x \rightarrow x_0$ 时 ( ) 不一定是无穷小。
$\text{A.}$ $|\alpha(x)|+|\beta(x)|$
$\text{B.}$ $\alpha^2(x)+\beta^2(x)$
$\text{C.}$ $\ln [1+\alpha(x) \cdot \beta(x)]$
$\text{D.}$ $\frac{\alpha^2(x)}{\beta(x)}$