• 试题 ID 17695


设函数 $f(t)$ 连续,

$$
F(x, y)=\int_0^{x-y}(x-y-t) f(t) \mathrm{d} t
$$


则 $($ )
A $\frac{\partial F}{\partial x}=\frac{\partial F}{\partial y}, \frac{\partial^2 F}{\partial x^2}=\frac{\partial^2 F}{\partial y^2}$
B $\frac{\partial F}{\partial x}=\frac{\partial F}{\partial y}, \frac{\partial^2 F}{\partial x^2}=-\frac{\partial^2 F}{\partial y^2}$
C $\frac{\partial \boldsymbol{F}}{\partial x}=-\frac{\partial \boldsymbol{F}}{\partial y}, \frac{\partial^2 \boldsymbol{F}}{\partial x^2}=\frac{\partial^2 F}{\partial y^2}$
D $\frac{\partial F}{\partial x}=-\frac{\partial F}{\partial y}, \frac{\partial^2 F}{\partial x^2}=-\frac{\partial^2 F}{\partial y^2}$
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见