已知 $z=x y f\left(\frac{y}{x}\right)$ ,且 $f(u)$ 可导,若 $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=y^2(\ln y-\ln x)$ ,则()
$\text{A.}$ $f(1)=\frac{1}{2}, f^{\prime}(1)=\frac{1}{2}$
$\text{B.}$ $f(1)=0, f^{\prime}(1)=\frac{1}{2}$
$\text{C.}$ $f(1)=\frac{1}{2}, f^{\prime}(1)=1$
$\text{D.}$ $f(1)=0, f^{\prime}(1)=1$