科数网
试题 ID 17583
【所属试卷】
2021年全国硕士研究生招生统一考试数学试题及详细参考解答(数一)
设 $n$ 为正整数, $y=y_n(x)$ 是微分方程 $x y^{\prime}-(n+1) y=0$ 满足条件 $y_n(1)=\frac{1}{n(n+1)}$ 的解.
(1) 求 $y_n(x)$ ;
(2) 求级数 $\sum_{n=1}^{\infty} y_n(x)$ 的收敛域及和函数.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $n$ 为正整数, $y=y_n(x)$ 是微分方程 $x y^{\prime}-(n+1) y=0$ 满足条件 $y_n(1)=\frac{1}{n(n+1)}$ 的解.
(1) 求 $y_n(x)$ ;
(2) 求级数 $\sum_{n=1}^{\infty} y_n(x)$ 的收敛域及和函数.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见